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S I M U L A T I O N  O F  V E R T I C A L  T R A N S P O R T  O F  H E A T  AND 

S O L I D  P A R T I C L E S  IN F L U I D I Z E D - B E D  A P P A R A T U S  

Y u .  S.  T e p I i t s k i i  a n d  I .  I .  Y a n o v i c h  UDC66.096.5 

An equation for  simulating nonsta t ionary ver t ica l  t r anspor t  of heat and solid pa r t i c l e s  in 
nonhomogeneous f luidized beds is  proposed.  

The t rends  in the t r anspor t  of solid pa r t i c l e s  and the re la ted  heat t r anspor t*  throughout the fluidized 
bed space s t rongly affect the operat ing eff ic iency of apparatus  based on fluidization techniques.  The re fo re ,  
the mixing of pa r t i c l e s  and internal  heat t r a n s f e r  in such a sys tem invar iably engage the in te res t  of r e s e a r -  

chers  [1-4]. 

Until recent ly ,  the most  commonly accepted ver t ica l  mixing scheme was based on the c lass ica l  diffu- 
sion model ,  which descr ibes  the p r o c e s s  by means  of a single p a r a m e t e r  - t h e  coefficients  of ver t ica l  diffu- 
sion (dispersion) of pa r t i c l e s  [1]. However,  this  model cannot descr ibe  the exper imenta l ly  observed  nonsta-  
t ionary  mixing curves  [5l. 

It was proposed  in [6], probably for  the f i r s t  t ime ,  to descr ibe  the p r o c e s s  by a hyperbol ic  diffusion 
equation that would take into accouter the f ini teness  of the par t i c le  velocit ies.  A sys tem of two hyperbolic  
f i r s t - o r d e r  equations was used e a r l i e r  in [7] fo r  descr ibing the ver t ica l  mixing of the solid phase.  This sys -  
t em  was based on the assumption that the t r anspor t  of pa r t i c l e s  throughout the bed was pure ly  convective 
(circulatory)  in charac te r :  upward in the bubble t r a i l s  and downward in the r e s t  of the emulsion phase.  In 
this ,  the par t ic le  veloci t ies  in both phases  were ,  natural ly ,  l imited. The necess i ty  and importance of taking 
into accotmt the f ini teness  of the velocity of pa r t i c les  was shown in [5, 8] by d i rec t  compar ison  between the 
exper imenta l  mixing curves  and those calculated by means  of hyperbol ic  equations [6, 7]. Using the resu l t s  
of an analysis  of the fluidization p r o c e s s  based on methods of the the rmodynamics  of i r r e v e r s i b l e  p r o c e s s e s ,  
Liu and Gidaspow have der ived [3] a hyperbolic  equation of diffusion to descr ibe  ver t ica l  solid phase t ranspor t .  
It has been suggested in [4] to use th ree  f i r s t - o r d e r  hyperbol ic  equations to descr ibe  ver t ica l  mixing of p a r -  
t ic les  in a bed slowed down by a bunch of pipes.  An additional equation (in compar ison  with the sys tem given 
in [7]) desc r ibes  the downward core motion of pa r t i c l e s  at the wall. Analysis  shows that none of the above 
models  compr i ses  all the basic  cha rac te r i s t i c s  of the mixing p ro ce s s  (see below). 

* It is  admiss ible  to assume that the heat t r a n s f e r  is  due en t i re ly  to the motion of pa r t i c l e s  in nonhomogene-  
ous fluidized beds because of 'the large  dif ference between the volumetr ic  specific heat values of the gas and 
the par t i c les .  The t r anspor t  of heat  and the t r anspo r t  of d i sperse  mate r ia l  and ' therefore cha rac t e r i zed  by 
the same t r ends ,  so that ,  for  brevi ty ,  we shalI subsequently make no special  dist inction between these  p r o -  
cesses  and use only the t e r m  "mixing" (diffusion of par t ic les)  o r  " the rma l  conductivity" of the bed. 

A. V. Lykov Institute of Heat and Mass  T r a n s f e r ,  Academy of Sciences of the Beloruss ian  SSR, Minsk. 
Trans la ted  f rom Inzhenerno-Fiz iches td i  Zhurnal ,  Vol. 44, No. 4, pp. 608-615, April ,  1983. Original a r t ic le  

submitted December  7, 1981. 
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The parameters of these models, as a rule, do not reflect all of the actual physical processes, which 

makes it impossible to describe the diffusion of particles in a wide range of experimental conditions. The 
two-concentration model of mixing which is presented in [9] takes into account, besides the finiteness of the 
particle velocity, also other important characteristics of the process, which are not considered all together 
in other schemes: convective particle transport, exchange between the ascending and descending particle flows, 
and turbulent particle diffusion in the descending emulsion phase, caused by passage through a layer of gas 
bubbles. The distinguishing feature of this model is that it is suitable for describing both horizontal and ver- 
tical mixing, as it establishes a close mutual relationship between them. The present study is a continuation 
of [9], and its aim is to determine the possibility of describing vertical particle mixing and heat transport in 
nonhomogeneous fluidlzed beds by means of a second-order hyperbolic equation. 

The following system of equations is used in [9] to describe vertical mixing of particles in a nonhomo- 
geneous fluidized bed: 

A 0C1 ~- L/ 0C1 026't 02Cl ( '17'U2 ~ 02C1 
8t ~ - F  AT* Ot z { 2uT* OtOx' = \AD~----A j --Ox z q- 

( 0 0 ) ,  Oc~ 0c2 
4- ~ ( ~ -  c,) 1 + ~* ~ i -  + ~*~* 7E~ " s a~ - u a--7 = ~ (c~ - c2). 

We can readily derive from (i) an equation for calculating the vertical profile of the mean particle density 

c = (Ac i + Bc2)/(A + B): 

(t) 

Oe [ AB ] 020 [ (B--A)u ] O2e [ u2 ] OZe 1 [ "~*u2(B--2A) SDv]X 
0-7 -+ ~*q- [3(Aq-B) ~7-47 ~*u~+ ~-(A-+---B7 atax Dr+ f3(A+B) 0x----~47-~ A(A+B) 

�9 D r  . = 0 .  (2 )  
• ~ -~ [~ (A + B) at~ax { ~ (A + B) at~ - ~  A (,4 + B) Ox~ 

It  has  been e s t ab l i shed  in [9] tha t  Eq. (2) y ie lds  wave so lu t ions  and g e n e r a l l y  d e t e r m i n e s  th ree  d i f fe ren t  
dens i ty  waves .  I t  is  r e a d i l y  seen  tb_~t, be c a use  of  i ts  complex i ty ,  (2) is  not  sui table  f o r  p r a c t i c a l  appl icat ion.  
We shal l ,  t h e r e f o r e ,  a t t empt  to de r ive  f r o m  it a s i m p l e r  equat ion  which  would make  it pos s ib l e  to s imula t e  
ve r t i ca l  d i s p e r s e  m a t e r i a l  and hea t  t r a n s p o r t  in a f lu id ized  bed. 

It  was  Shown in [10] the:t, f o r  u 1 = u = 0; r * = 0, s y s t e m  (1) has  so lu t ions  which  r ap id ly  degene ra t e  with 
r e s p e c t  to the p a r a m e t e r  fl (actual ly,  f o r  fiH2/Dv ~ 10, t hey  no longe r  depend on flH2/Dv and a r e  t r a n s f o r m e d  
into the so lu t ions  of  the c l a s s i c a l  diffusion equation).  As  a ru l e ,  flH2/Dv > 10 in f lu id i zed -bed  a p p a r a t u s  [10]. 
This  fac t  made  it pos s ib l e  to d e s c r i b e  in [9, 11] the hor i zon ta l  mixing of  p a r t i c l e s  and heat  t r a n s f e r  in the  bed 
by a hype rbo l i c  s e c o n d - o r d e r  diffusion equat ion  (obtained f r o m  (2) f o r  u 1 = u = 0, by subst i tu t ing Dh fo r  Dr) ,  
r a t h e r  than by a t h i r d - o r d e r  equat ion of  the type  (2) f o r  u 1 = u = 0; fi--* ~. Cons ide r ing  th i s ,  we s h a h  a t t empt  
to de r ive  f r o m  (2) a c e r t a i n  s e c o n d - o r d e r  equat ion fo r  d e s c r i b i n g  the  ve r t i ca l  m o v e m e n t  of  p a r t i c l e s ,  us ing 
as  a ba s i s  the behav io r  of  (2) f o r  fi --* ~ .  

The condit ion/3 ~ ~ in (2) l o w e r s  i t s  o r d e r  and l eads  to a s e c o n d - o r d e r  equat ion:  

OZc OZc 0_~_o -b x*-..0Ze -b T'u1 -- D v - - .  (3) 
Ot Ot z OtOx Ox 2 

An analysis of this equation based on the method of characteristics is given in [9]. Direct t~tilization of (3) for 
describing vertical mixing of the disperse m~terial is inadmissible, if only because it does not contain the 
axial "Taylorian" diffusion of particles with the coefficient u2/fi (A + B) (see the coefficient in front of d2o/dx 2 
in (2)). This diffusion mechanism can be substantial in systems with intensive circulation flow. Therefore, 
our aim here is to derive an equation similar to (3) that would account for the "Taylorian" particle diffusion. 
The validity of the assumptions made will then be checked by comparing the theoretical and the experimental 

diffusion curves for heated particles. 

Consider the following equation: 

O---7-q-x* lq- ~(A-~-B)Dv I - ~  -q-u~ OtOx] Dv-[ ~(A+B) ax z 
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It satisfies the rational requirements for f i  ~ ~, t ~ ~, ~'*--- O, accour~ts for the axial "Taylorian" diffusion 

of particles, and correctly describes the velocities of the forward (wf) and reverse (Wr) waves in the descen- 
cling emulsion phase (see [9]). It is true that (4) does not contain 'the 'third wave with the velocity u 2 ('the velo- 
city of bubble trails). However, considering 'the smallness of B (in comparison with A), which is usual for a 
fluidized bed, we can assume that the above fact is of no great consequence, all 'the more so as the balance 
ascent of particles in gas bubble trails is taken into account in (4). 

Let us explore the possibility of using Eq. (4) to describe the vertical transport of heat and solid parti- 
cles in a fiuidized bed. Consider the following boundary-value problem for (4), written for the case of verti- 
cal heat transport (c ~ T, fl ~ a, Dv~ av)" 

aT + (V~, ( O2T , O2T \ [ u2 ] O2T (5) 
ot ) = a v +  + ' B )  ' 

T~, O ~ x < h ,  
T (0, x) T~ + To OT (0, x) = , x = h ,  --0; 

2 Ot 
To, h < x ~ H ,  

OT ( OJ OJ ) 
J = - -  q~a v 0~---- ~'~* - ~ -  + u~-~x = 0 ,  x =O ;  H. 

(6) 

We shall use the following auxiliary sys tem of equations for  solving the stated problem,  which s imulates  
the actual exper imenta l  conditions with r ega rd  to cr i t ical  heat t ranspor t  in a fluidized bed on the basis  of the 
two-dimensional  t he rma l  pulse method (see, fo r  instance,  [12]): 

A o aT1 + AOwf OT~ = r 2 _ _  T1), 
Ot 0 x 

BO OT2 __ BOwo OT----A-~ = cz ~ (T 1 --  T~), 
Ot Ox 

(7) 

p f ~  1 2  1 t X a v  1 2  w i t h t h e  c o n d i t i o n s A ~ 1 7 6  A~176176  : + - - ~ - u , + - ~ u l ;  Wo~ ~ - + - - 4 - u , - -  

1_ ul (wf, Wr a re  the forward  and the r e v e r s e  wave veloci t ies ,  respec t ive ly ,  which a re  defined by (5)). It can 
2 

be shown that we obtain the following f rom (7) for  determining T = A~ + B~ �9 
A ~ + B ~ 

OT A~176 ( OZT c)ZT "~ A~176 O2T (8) 
at ~ a ~  k , - ~  + ' 1  a - - Z ) -  ~ . a o ( A + B )  ax ~ 

The coefficients  A ~ B ~ and o~ 0 can readi ly  be de te rmined  so tlmt Eq. (8) cor responds  exact ly to (5). We use 
the condition A~176 ~ + ]3) = cp~-*. This condition, toge ther  with the one wri t ten ea r l i e r ,  A ~ + ]30 = A + B; 
A~ = ]3~ de te rmines  A ~ ]30, a0  unambiguously: 

O~ 0 (A + B) woWf A ~ = (A + B) wo/2 V av 1 2 
' a 1 ~ ' - - ~ - + - ( u , ,  

4~0~* ( "v +-T u, ) 
�9 T, 

~ / /  a v 1 o 
B o = (A + B) wfl2 --fi- + -T  u7 

and t r a n s f o r m  (8) into Eq. (5). 

F o r  sys tem (7) with the boundary conditions 

TI(0, x) = T2(0, x) = 

T~ (t, 0) = T~ (t, 0); 

T~, O ~ x < h ,  
(Th + To)/2, x = h, 
To, h < x ~ H ,  

T~(I, H) : Tz(t, H), 

(9) 

(io) 
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Fig. i. Comparison between the experimental response func-  
t ion and the theoretical functions based on the hyperbo l i c  mo- 

del (~ = 0.92; R = 0.01: i) experimental function; 2) E = a v + 

u2/ce (A+B) = 52 cm2/sec; c~ -- 0.06 i/see; 3) E = 45 em2/sec; 

c~ = 0.09 i/see; 4) E = a v = 32 cm2/sec; c~ = ~; 5) E = 45 cm2/ 

sec; c~eff = 0.61 i/see (Van Deemter's circulation model [7]). 

Quartz sand, d = 0.60 ram; u 0 = 20 era/see; ufi = 52 era/see; 

H = 51 cm; checkerboard bunch of horizontal pipes spaced at 

60 mm vertically and horizontally; wf = 6.6 era/see; u I = 1.2 
era/see; r* = 0.89 sec; t is given in seconds. 

a solution has been obtained in [13], which has the following form for the mean temperature T, averaged with 

respect to the two phases: 

-0-- ThT--T~ R+exp(--J~ (--1)nsinnnRna (Pch J~ A'~+ Dsh J~ A@ A~ Pe (11) 

w h e r e  

r = 2 c o s n n ( 1 - - ~ ) ;  D = F @ 2  
B 0 _ A 0 

A+B Penn sin ns~ (1 - -  ~); 

A~ BO ( 2~Pe ) 
A~ = ~ - - P e  2n2a2; Jo--  A + B  - -  ~ + R +  A ~  ~ - ; 

Pe = u~176 z = a~ 

With an allowance for the equality A~ = B~ = u 0, the boundary conditions in (10) stipulate the absence of 

a heat flux at the sections x = 0; H. Therefore, Eq. (7) with boundary conditions (I0) corresponds with an ac- 

curacy to specifications to system (5)-(6), the solution of which can therefore be obtained from (11) with an 

allowance for Eq. (9). The thus found solution of the stated boundary-value problem (5)-(6) has the following 

form: 
2Fo ) 

O= R@ exp - -  p 7 7 b  7 iF~  

�9 P e *  = 

I 2 Fo 
X 2cosnaz(1--~)ch Pc* +~--R__~4 

Pe* + . o  
Pe* 

(--  1) '~ sin n~R 

2 cos na (1 - -  ~) @ 2 Pc* nn sin nn (1 - -  ~) 
]fl 1 - -  (Pe *" + 4 Fo*) n2n 2. I 

n n  

1/] - -  (Pc *~ + 4 Fo*) n2n ~ ] 

2 Fo 
Pc* + ~ - - R  

sh 

q_ (12) 

4 Fo* 
Pe* 
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Fig. 2. Compar i son  between the e x p e r i -  
mental  r e sponse  function and the theo-  
re t ica l  r e sponse  functions based on the 
pa rabo l ic  model  (~ = 0.92; R = 0.01): 1) 
experimer~tal function (see Fig. 1); 2) 
E = 104 em2/sec ;  3) 50; 4) 45; 5) E =32 
em2/sec .  

where  

(~T */~/1 2 * ~ a v ;  ~ t a v  Pe* ..... ; Fo* -- Fo = 
H H 2 H ~ 

The exper imen ta l  cu rves  of ve r t i ca l  diffusion of heated  p a r t i c l e s  obtained in [12] were  compared  with 
'those ca lcula ted  by means  of a compute r  on the ba s i s  of (12). Some typical  r e su l t s  of the compar i son  a re  
shown in Fig. 1. The coeff icient  of ve r t i ca l  t h e r m a l  diffusivity of the bed a v was found with r e spec t  to the r e -  
la ted  coefficient  of hor izonta l  t h e r m a l  diffusivity a h (see Fig. 3 in [11]) by means  of the method desc r ibed  in 
[9]. The re laxa t ion  ' t ime 7" was ca lcula ted  by using the p r o c e s s i n g  of experimer~ts on hor izontal  heat t r a n s -  
por t  [9, 11] on the bas i s  of the exp re s s ion  "r* = a h /V  2. The veloci ty  of the descending c i r cu la to ry  motion of 

V/ 1 .~+ p a r t i c l e s  u 1 = 1.2 c m / s e c  was de t e rmined  by using the express ion  for  the wave veloci ty wf = ~ .  + -~- 

1 ~- u i (the value of wf is  r ead i ly  de t e rmined  [9] with r e s p e c t  to the lag t ime  (t 3) of the exper imenta l  r e sponse  

function (Fig. 1)). The condition fo r  the bes t  a g r e e m e n t  between the exper imen ta l  curve and those  calculated 
by means  of (12), which, for  the sake of s impl ic i ty ,  was  e s t ima ted  with r e s p e c t  to the height of the f i r s t  "peak" 
of the experimer~tal r e sponse  curve ,  p rov ided  the sought values  of the in te rphase  exchange coefficient  and, 
thus ,  of  the effect ive coefficient  of  ver t ica l  t h e r m a l  diffusivity (curve 3 in Fig. l a  fo r  ~= 0.09 1 /sec ;  E = 45 
cm2/sec) .  F o r  compar i son ,  Fig. 2 shows the r e s u l t s  obtained in calculat ing the r e sponse  function by using 
the solution of the pa rabo l i c  equation of t h e r m a l  conductivity: 

= R + 2 ~ sin n ~ R  cos nrt~ exp (-- n~n ~ Fo), (13) 
ng 

which is obtained from (12) by limit passage to Fo* = Pe* = 0 (T* = 0; U I = 0). It is evident that the hyper- 
bolic equation of thermal conductivity provides a significal~tly better description of the experimental relation- 
ships (see Fig. i) than the parabolic equation (Fig. 2). An importax~t fact should be noted: The coefficient of 
vertical dispersion of heated particles (the effective coefficient of vertical thermal diffusivity of the bed) E = 
50 cm2/see, found by means of the classical (parabolic) equation of thermal conductivity and the well-known 
two-dime nsional thermal pulse method [14], proved to be very close to a v + u2/a(A + B)= 45 cm2/sec (for ~ = 
0.09 I/see). This agrees with the conclusion reached in [II]: The horizontal thermal diffusivity coefficients 
determined by means of the hyperbolic and the parabolic equations of thermal conductivity were definitely not 

different from each other. 

Figure ib also provides a comparison between the experimental curve of vertical heat transport and the 
curve based on solution (ii) for Van Deemter's eircul~tion model [7]; whose equations are obtained from (7) 

by using the subst i tut ion A ~ A0; B ~ B0; wf--* (Ul)eff; W0 '-~ U2; ~0._~ O~ef f (A0(ul)eff = -R0u2; A0 + B0 = A +B).~" 
The value of (U0e ff was  wf = 6.6 c m / s e c ,  while 'the bubble (trail) veloci ty  u 2 was a s s u m e d  to be 100 c m / s e c .  

2 2 The coeff icient  ~ eff was  de t e rmined  f r o m  the condition E = A0(ul)eff/oz eff(A + B) = 45 cm 2 / s e e ,  which actual ly 
r educes  the effect ive coeff icient  of ve r t i ca l  t h e r m a l  diffusivity of the bed to the axial  coefficient  of "Taylor ian"  
diffusion of hea ted  pa r t i c l e s .  F o r  the given specif ic  case ,  ~e f f  = 0.61 1 / sec .  I t  i s  evident f r o m  Fig. 1 that  the 
c i rcula t ion  model  of ve r t i ca l  mixing,  while descr ib ing  the initial ' t ime lag t l ,  r e n d e r s  the subsequent  behavior  

I t  should be noted that  the r e sponse  functions of the c i rcula t ion model  can also be calculated by means  of 

z*E ; t E  T* AoBo 
Fo =~-~-,- = ( ~)eff ~ elf( + B). P c * =  [ ( u l ) e f f - - u ~ ] ~ *  �9 F o * =  E = A  2 ~ u 2 ce A (12), where  Ha H 
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of the t h e r m a l  curve much  l e s s  adequately than model  (5). t 

In conclusion,  we shall  make  a few r e m a r k s  concerning the compar i son  between the exper imen ta l  and 
theore t i ca l  mixing curves  for  hes:ted p a r t i c l e s .  The s ta t i s t ica l  na ture  of the p r o c e s s  man i f e s t s  i t se l f  mos t  
s t rongly  in ver t ica l  mixing,  which r e s u l t s  in a ce r ta in  (often considerable)  d i f ference  between the r e sponse  
functions obtained under  identical  opera t ing  conditions,  but at differer~t t imes .  However ,  the  bas ic  f ea tu re s  
of these  functions - ex is tence  of the c h a r a c t e r i s t i c  t i m e  lag t l and the accompanying  sharp  t e m p e r a t u r e  jump 
(Figs.  1 and 2) - r e m a i n  unchanged. The p roposed  model  d e s c r i b e s  p r i m a r i l y  these  c h a r a c t e r i s t i c s  in an 
adequate manner .  

In contrast to parabolic eqttutions of diffusion and thermal conductivity, the solutions of a hyperbolic 
equation of the type (4) o r  (5) r e f l ec t  fa i r ly  accu ra t e ly  the f o r m  of the initial  t e m p e r a t u r e  (or density) d i s t r i -  
bution. It  i s  c l ea r  that the init ial  conditions prevailin_g in e x p e r i m e n t s  can dif fer  to a ce r ta in  extent f r o m  those 
ass igned  in (6). This  mus t  be taken into account in analyzing the r e su l t s  of compar i son  between the exp e r i -  
menta l  and the theore t i ca l  curves .  

N O T A T I O N  

a v and a h, coeff ic ients  of the ver t i ca l  and the horizontal  t h e r m a l  diffusivi ty of the bed, respec t ive ly ;  
A, por t ion  of the bed volume occupied by the descending continuous phase  (phase A); B, por t ion  of the bed 
volume occupied by bubble t r a i l s  (phase ]3); A + B = 1 -- ~b; Cs,  specif ic  heat  of solid pa r t i c l e s ;  c~ and c2, 
dens i t i es  of labeled p a r t i c l e s  in phas e s  A and B, r espec t ive ly ;  d, pa r t i c l e  d iamete r ;  Dxx, e lement  of the co-  
eff icient  t e n s o r  of turbulent  pa r t i c l e  diffusion in phase  A; D v = ADxx/(A + B), coefficient  of ver t ica l  diffusion of 
pa r t i c l e s ;  Dh, coefficient  of hor izontal  diffusion of pa r t i c l e s ;  E = a v + u2/~ (A + B), effect ive coefficient  of 
ve r t i ca l  t h e r m a l  diffusivity of the bed; h, width of the heat  pulse;  H, bed height,  J = Q/pCs ;  Q, t he rma l  flux 
density;  R = h / H ;  t ,  t ime ;  T 1 and T 2, pa r t i c l e  t e m p e r a t u r e s  in phase s  A and B, r e spec t ive ly ;  u 1 and u2, ve lo-  
c i t ies  of the descending emuls ion  phase  and of the bubble t r a i l s ,  r e spec t ive ly ;  Au 1 = Bu 2 = u, c i rcula t ion  velo-  
ci ty of p a r t i c l e s  with r e s p e c t  to the en t i re  c r o s s  sect ion of the appara tus ;  ufi, f i l t ra t ion ra te ;  u0, incipient 
f lnidizat ion ra te ;  v, hor izontal  wave veloci ty,  wf and w0, veloci t ies  of the fo rwa rd  and r e v e r s e  waves  defined 
by (5), r e spec t ive ly ;  x, ve r t i ca l  coordinate;  ~ and fi, ir~terphase exchange coeff icients;  e b, bubble densi ty 
in the bed; ~ = x / H ;  p ,  f luidized bed density;  7 " ,  re laxa t ion  t ime ;  q~ = 1 + u2/c~(A + B)av;  e = 0/R.  
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CALCULATION OF THE EFFECTIVE 

OF A TWO-PHASE STREAM 

A. P. Vasil'ev 

PERMITTIVITY 

UDC 532.529.5 

A calculating equation is proposed for the effective permittivity of bubbly and gas-drop 

streams. 

The methods of electrical conductivity and inductance [I], which are widespread in the diagnostics of 
two-phase flows, cannot be used to measure the volumetric content of the gaseous phase in a stream of di- 
electric liquid. In this connection one can use a capacitive method based on measuring the capacitance of a 

capacitor placed in the two-phase stream. 

The dependence of the effective permittivity of a two-phase stream on the volumetric content of the dis- 
perse phase in it will be decisive for the use of this method. This dependence must also be at hand in many 
calculations of electron-ion technology and in problems of the electrohydrodynamics of two-phase flows [2, 3]. 

We note that methods are known in the literature [4-6] for calculating the coefficients of effective conduc- 
tivity of heterogeneous (nonflowing) media. Unfortunately, they ignore the possibility of reorganization of the 
structure of a two-phase stream with an increase in the volumetric content of the disperse phase. For exam- 
pie, the change in the mode of flow of a bubbly stream has a crisis character, so that the coefficients of con- 
ductivity should undergo a discontinuity at some limiting attainable volumetric bubble content. 

Let us consider a disperse stream of two dielectric media. Let the disperse phase be present in the 

form of equal-sized spherical drops or bubbles and be characterized by a permittivity 62, while the carrier 
(dispersion) phase is characterized by a permittivity ~ i- We assume that the fluctuations in volumetric con- 
tent, number density, and sizes of the disperse particles caused by turbulent pulsations and processes of 
particle fragmentation and coalescence do not exceed their average values q~, N, and R by many times. 

Let a small plane capacitor be placed in the two-phase stream so that the functions ~p, N, and R can be 

taken as uniform in the space between its plates. At the same time, the volume of the capacitor is represen- 
tative, i.e., a bh >> R 3, so that the nonuniform electrostatic field due to the disperse particles can be averaged. 

Let the distance a between the capacitor plates be a multiple of 2R. We divide up the region of the two- 
phase stream in it into layers of thickness 2R by equipotentia[ planes. In the resulting system of a/2R series- 
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